Analytic Besov spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolating Sequences on Analytic Besov Type Spaces

We characterize the interpolating sequences for the weighted analytic Besov spaces Bp(s), defined by the norm ‖f‖ Bp(s) = |f(0)|p + Z D |(1− |z|2)f ′(z)|p(1− |z|2)s dA(z) (1− |z|2)2 , 1 < p < ∞ and 0 < s < 1, and for the corresponding multiplier spaces M(Bp(s)).

متن کامل

Carleson Measures for Analytic Besov Spaces: the Upper Triangle Case

For a large family of weights ρ in the unit disc and for fixed 1 < q < p < ∞, we give a characterization of those measures μ such that, for all functions f holomorphic in the unit disc, ‖f‖Lq(μ) ≤ C(μ) (∫ D |(1− |z|)f ′(z)|pρ(z) m(dz) (1− |z|)2 + |f(0)| ) 1 p .

متن کامل

Multipliers on Weighted Besov Spaces of Analytic Functions

We characterize the space of multipliers between certain weighted Besov spaces of analytic functions. This extend and give a new proof of a result of Wojtaszczyk about multipliers between Bergman spaces. Introduction. P. Wojtaszczyk [W], using certain factorization theorems due to Maurey and Grothendieck, proved the following results: Let α > 0, 0 < p ≤ 2 ≤ q < ∞ and 1r = 1 p − 1q . (0.1) (Bq, ...

متن کامل

Interpolation of Besov Spaces

We investigate Besov spaces and their connection with dyadic spline approximation in Lp(Cl), 0 < p < oo. Our main results are: the determination of the interpolation spaces between a pair of Besov spaces; an atomic decomposition for functions in a Besov space; the characterization of the class of functions which have certain prescribed degree of approximation by dyadic splines.

متن کامل

Greedy Bases for Besov Spaces

We prove that the Banach spaces (⊕n=1`p )`q , which are isomorphic to the Besov spaces on [0, 1], have greedy bases, whenever 1 ≤ p ≤ ∞ and 1 < q < ∞. Furthermore, the Banach spaces (⊕n=1`p )`1 , with 1 < p ≤ ∞, and (⊕n=1`p )c0 , with 1 ≤ p < ∞ do not have a greedy bases. We prove as well that the space (⊕n=1`p )`q has a 1-greedy basis if and only if 1 ≤ p = q ≤ ∞.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1991

ISSN: 0022-247X

DOI: 10.1016/0022-247x(91)90091-d